
PROJECT MANUAL

ALSEA SCHOOL DISTRICT POWER SERVICE UPGRADE PHASE 1a.2

100% AGENCY & BID ISSUE 15 OCTOBER 2022

SITE ADDRESS: 301 SOUTH 3rd STREET ALSEA, OREGON 97324

4521 South Cloverdale Road Suite 102 - Boise, Idaho 83709 P: 208-991-0855 E: Scott@Straightline.biz

TABLE OF CONTENTS

PT PROJECT TEAM

A/E-1 only

DIVISION 01 GENERAL REQUIREMENTS

011000 SUMMARY OF WORK & GENERAL REQUIREMENTS

014200 REFERENCES

017329 CUTTING AND PATCHING

DIVISION 02 EXISTING CONDITIONS

024119 SELECTIVE STRUCTURE DEMOLITION

DIVISION 3 CONCRETE

033000 CAST IN PLACE CONCRETE

DIVISION 16

ELECTRICAL

- 260000 TABLE OF CONTENTS
- 260100 ELECTRICAL GENERAL PROVISIONS
- 260500 COMMON WORK RESULTS FOR ELECTRICAL
- 260519 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 260526 GROUNDING AND BONDING
- 260529 HANGERS AND SUPPORTS
- 260533 RACEWAY AND BOXES
- 260548 VIBRATION AND SEISMIC CONTROLS
- 260553 ELECTRICAL IDENTIFICATION
- 262413 SWITCHBOARDS
- 262416 PANELBOARDS
- 262726 WIRING DEVICES
- 262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 263210 ENGINE GENERATOR
- 263600 TRANSFER SWITCHES

PROJECT TEAM

OWNER: ALSEA SCHOOL DISTRICT 301 South 3RD Street Alsea, OR 97324

CONSTRUCTION MANAGER: CB CONSTRUCTION

1202 Adams Avenue LaGrande, OR 97850 Kirk Borgerding 541-805-9517 kirk@cbconst.us

STRAIGHTLINE

ARCHITECT: STRAIGHTLINE ARCHITECTURE

Straightline Architecture 4521 South Cloverdale Road Suite 102 Boise, ID 83709 Scott Marshall, AIA-NCARB 208-991-0855 Scott@Straightline.biz

engineering4tomorrow

ELECTRICAL ENGINEER: E2CO

W:

800 S. Industry Way, Suite 350 Meridian, Idaho 83642 Jon Van Stone, PE. Principal 208-378-4450 jvanstone@e2co.com

PART 1 - GENERAL

1.1. RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and other Division-1 Specification Sections, apply to this Section.
- 1.2. DESCRIPTION OF THE PROJECT

Existing campus wide power service replacement to include demolition of the existing power service and install of new power service and a new emergency generator.

- 1.3. CONTRACT DOCUMENTS
 - A. The Contract Documents for the Work are entitled:

ALSEA SCHOOL DISTRICT 1a.2: POWER SERVICE UPGRADE

- B. The Contract Documents are dated 1-15-2022
- 1.4. TYPE OF CONTRACT
 - A. Project will be constructed under a CM/GC contract.
- 1.5. OWNER'S OCCUPANCY REQUIREMENTS
 - A. Owner Occupancy of existing facility: Owner will occupy and use the facility during construction in this project. The contractor shall adhere to this owner's right.
- 1.6. WORK RESTRICTIONS & END USER (SCHOOL DISTRICT) COORDINATION
 - A. On-Site Work Days and Hours:

Construction activities can occur Monday through Friday 7 a.m. to 5:30 p.m. expanded work days or hours may be allowed by the CM/GC on an as needed justifiable basis.

B. Building power switch over between the old service and new service shall be minimal in nature and shall be coordinated with the CM/GC and school district 2 weeks prior to the event.

CONTRACTOR'S STAGING AREA

A. Staging areas will be discussed more in depth at the Pre-construction meeting and shall be further defined by the CM/GC.

END OF SECTION 011000

SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.
- J. "Owner": When applicable to providing direction during the project as it directly relates to activities which impact schedule and cost, the owner shall be understood to

REFERENCES

be the 'Owners Authorized Representative Aka CM/GC' whom is introduced as such in the established Pre-Construction meeting.

K. "CM/GC": Construction Manager / General Contractor shall be the 'owners Representative as defined herein.

1.3 INDUSTRY STANDARDS

- A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.
- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Thomson Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the U.S."
- B. As contained on construction documents: Refer to abbreviations listed on drawing sheets of the construction documents, whereas they apply to each specific sheet contained therein.

END OF SECTION 014200

SECTION 017329 - CUTTING AND PATCHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes procedural requirements for cutting and patching.

1.3 DEFINITIONS

- A. Cutting: Removal of in-place construction necessary to permit installation or performance of other Work.
- B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work.

1.4 SUBMITTALS

- A. Cutting and Patching Proposal: Submit a proposal describing procedures at least 5 days before the time cutting and patching will be performed, requesting approval to proceed. Include the following information:
 - 1. Extent: Describe cutting and patching, show how they will be performed, and indicate why they cannot be avoided.
 - 2. Changes to In-Place Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building's appearance and other significant visual elements.
 - 3. Products: List products to be used and firms or entities that will perform the Work.
 - 4. Dates: Indicate when cutting and patching will be performed.
 - 5. Utility Services and Mechanical/Electrical Systems: List services/systems that cutting and patching procedures will disturb or affect. List services/systems that will be relocated and those that will be temporarily out of service. Indicate how long services/systems will be disrupted.

- 6. Structural Elements: Where cutting and patching involve adding reinforcement to structural elements, submit details and engineering calculations showing integration of reinforcement with original structure.
- 7. Architect's Approval: Obtain approval of cutting and patching proposal before cutting and patching. Approval does not waive right to later require removal and replacement of unsatisfactory work.

1.5 QUALITY ASSURANCE

- A. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.
- B. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
- C. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
- D. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- E. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

1.6 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during cutting and patching operations, by methods and with materials so as not to void existing warranties, if any.

1.7 MATERIALS

A. General: Comply with requirements specified in other Sections.

- B. In-Place Materials: Use materials identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of in-place materials.

PART 2 - EXECUTION

2.1 EXAMINATION

- A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed.
 - 1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with in-place finishes or primers.
 - 2. Proceed with installation only after unsafe or unsatisfactory conditions have been corrected.

2.2 PREPARATION

- A. Temporary Support: Provide temporary support of Work to be cut.
- B. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- C. Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.
- D. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

2.3 PERFORMANCE

- A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

- B. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Proceed with patching after construction operations requiring cutting are complete.
- C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - c. Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
- D. Cleaning: Clean areas and spaces where cutting and patching are performed. Completely remove paint, mortar, oils, putty, and similar materials.

END OF SECTION 017329

CUTTING AND PATCHING

SECTION 024119 - SELECTIVE STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Demolition and removal of selected portions of building or structure.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
- B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owners Authorized Representative.
- C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
- D. Remove and Retain: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
- E. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

- A. Unless otherwise indicated, demolition waste becomes property of Contractor.
- B. Historic items, relics, antiques, and similar objects of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 - 1. Carefully salvage in a manner to prevent damage and promptly return to Owners Authorized Representative.

1.5 PRE- INSTALLATION MEETINGS

- A. Pre-demolition Conference: Conduct conference at Project site. May be done concurrently at the Pre-Construction conference.
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review limitations of existing structure.
 - 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 - 5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

- A. Proposed Protection Measures: Submit report, including drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control, and for noise control. Indicate proposed locations and construction of barriers.
- B. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 - 2. Coordination for shutoff, capping, and continuation of utility services, if any.
 - 3. Use of elevator and stairs.
 - 4. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
- C. Inventory: Submit a list of items to be removed and salvaged and deliver to Owners Authorized Representative prior to start of demolition.

1.7 CLOSEOUT SUBMITTALS

- A. Inventory: Submit a list of items that have been removed and salvaged.
- B. Landfill Records: Indicate receipt and acceptance of hazardous wastes, if any, by a landfill facility licensed to accept hazardous wastes.

1.8 FIELD CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: A hazardous materials survey has been done and it is not expected that hazardous materials will be encountered in this Phase of the Work.

- 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owners Authorized Representative. Hazardous materials will be removed by Owner under a separate contract.
- E. Storage or sale of removed items or materials on-site is not permitted.
- F. Utility Service: Maintain existing utilities in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

- B. Review any available record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.
- C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 - 1. Comply with requirements for existing services/systems interruptions specified in Division 01 Section "Summary."
 - 2. Owners Authorized Representative will arrange to shut off indicated services/systems when requested by Contractor.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Division 01 Section "Temporary Facilities and Controls."
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 - 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 - 4. Cover and protect furniture, furnishings, and equipment that have not been removed.
 - 5. Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Division 01 Section "Temporary Facilities and Controls."

- C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 - 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 4. Do not use cutting torches.
 - 5. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 - 6. Remove elevated items and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 - 7. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 8. Dispose of demolished items and materials promptly.
- B. Removed and Salvaged Items:
 - 1. Clean salvaged items.
 - 2. Store items in a secure area until delivery to Owners Authorized Representative.
 - 3. Transport items to Owner's storage area on-site.
 - 4. Protect items from damage during transport and storage.
- C. Removed and Reinstalled Items:
 - 1. Clean and repair items to functional condition adequate for intended reuse.
 - 2. Protect items from damage during transport and storage.

- 3. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

- A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.
- B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.
- C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.
- D. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers. The RFCI document can be found at:

http://www.rfci.com/recommended-work-practices/

3.6 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
- B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent surfaces, structures, and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. This specification section shall be used to supplement the structural specifications found on the 'S' series sheets in the Project Drawings.

1.2 SUMMARY

- A. This Section specifies cast-in place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 - 1. Footings.
 - 2. Slabs-on-grade.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement subject to compliance with requirements.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
 - 1. Corner bars for providing for continuity of horizontal reinforcing around corners of footings, foundation walls, and other concrete items <u>are</u> required and shall be shown on shop drawings.

- 2. Approval of shop drawings by the Architect shall not relieve the Contractor of providing all reinforcing noted, shown, or implied by the project Contract Documents.
- D. Product Data: For each of the following, signed by manufacturers:
 - 1. Admixtures.
 - 2. Form materials and form-release agents.
 - 3. Steel reinforcement and accessories.
 - 4. Curing compounds.
 - 5. Floor and slab treatments.
 - 6. Vapor retarders.
 - 7. Semirigid joint filler.
 - 8. Joint-filler strips.
 - 9. Concrete slab sealing materials.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
- B. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from one source, and obtain admixtures through one source from a single manufacturer.
- C. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specification for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

D. Concrete Testing Service: The Owner will engage a qualified independent testing agency to perform evaluation tests

E. Special Inspections: The Owner will engage an inspection agency to provide special inspections per Structural Notes on Drawings and as required by the International Building Code. Costs for such inspection shall be paid directly to the inspection agency by the Owner.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 - 3. Products or manufacturers other than those specified are subject to approval by Architect prior to bidding.

2.2 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum.
- D. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- E. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spilling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface.
 - 2. Furnish ties that, when removed, will leave holes no larger than 1 inch (25 mm) in diameter in concrete surface.
 - 3. Furnish ties with integral water-barrier plates to walls indicated to receive damp proofing or waterproofing.

2.3 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
- B. Plain-Steel Wire: ASTM A 82, as drawn.

2.4 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, cut bars true to length with ends square and free of burrs.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.

2.5 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type I or II, gray.
 - a. Fly Ash: ASTM C 618, 20 percent of cementitious materials maximum.
- B. Normal-Weight Aggregates: ASTM C 33, coarse aggregate graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.
 - 1. Maximum Coarse-Aggregate Size: 3/4 inch (19 mm) nominal.
- C. Water: ASTM C 94/C 94M and potable.

2.6 ADMIXTURES

- A. Air-Entraining Admixture: ASTM C 260.
- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions

exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

- 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
- 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
- 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
- 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
- 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
- 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.7 VAPOR RETARDERS

- A. Plastic Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape and penetration boots or seals. Vapor Retarder to be placed DIRECTLY BELOW concrete slab at all interior slabs.
 - 1. Products:
 - a. Fortifiber Corporation; Moistop Ultra A.
 - b. Raven Industries Inc.; Vapor Block 15.
 - c. Reef Industries, Inc.; Griffolyn Type 105.

2.8 FLOOR AND SLAB TREATMENTS

- A. Concrete Floor Slab Sealers:
 - 1. Basis-of-Design Products: Provide the following:
 - a. At Exposed Concrete: Convergent Concrete Technologies "Pentra-Guard".
- B. Concrete floor slab sealers by other manufacturers are subject to approval prior to bidding.

2.9 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
 - 1. Available Products:

- a. ChemMasters; Spray-Film.
- b. Conspec Marketing & Manufacturing Co., Inc., a Dayton Superior Company; Aquafilm.
- c. Dayton Superior Corporation; Sure Film.
- d. Euclid Chemical Company (The); Eucobar.
- e. Kaufman Products, Inc.; Vapor Aid.
- f. Lambert Corporation; Lambco Skin.
- g. L&M Construction Chemicals, Inc.; E-Con.
- h. MBT Protection and Repair, Div. of ChemRex; Confilm.
- i. Meadows, W. R., Inc.; Sealtight Evapre.
- j. Metalcrete Industries; Waterhold.
- k. Nox-Crete Products Group, Kinsman Corporation; Monofilm.
- I. Sika Corporation, Inc.; SikaFilm.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlappolyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 - 1. Products:
 - a. ChemMasters; Safe-Cure Clear.
 - b. Conspec Marketing & Manufacturing Co., Inc., a Dayton Superior Company; W.B. Resin Cure.
 - c. Dayton Superior Corporation; Day Chem Rez Cure (J-11-W).
 - d. Euclid Chemical Company (The); Kurez DR VOX.
 - e. Kaufman Products, Inc.; Thinfilm 420.
 - f. Lambert Corporation; Aqua Kure-Clear.
 - g. L&M Construction Chemicals, Inc.; L&M Cure R.
 - h. Meadows, W. R., Inc.; 1100 Clear.
 - i. Nox-Crete Products Group, Kinsman Corporation; Resin Cure E.

2.10 RELATED MATERIALS

A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.

B. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.11 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
- B. Cementitious Materials: Fly ash may be used to reduce the total amount of Portland cement in concrete footings, foundation walls and piers and concrete walls only. Limit percentage, by weight, of cementitious materials other than Portland cement in concrete as follows:
 - 1. Fly Ash: 15 percent.
- C. Limit water-soluble, chloride-ion content in hardened concrete to 0.06 percent by weight of cement.
- D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing or high-range water-reducing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, and concrete with a watercementitious materials ratio below 0.50.

2.12 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Footings: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 2500 psi at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.45.
 - 3. Slump Limit: 4 inches to 6 inches.
 - 4. Air Content: 4.5 to 7.0 percent, at point of delivery for 3/4-inch nominal maximum aggregate size.

- B. Slabs-on-Grade, Exterior: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 4000 psi at 28 days.
 - 2. Maximum Water-Cement Ratio: 0.45.
 - 3. Slump Limit: 4 inches to 6 inches.
 - 4. Air Content: 4.5 to 7.0 percent, at point of delivery for 3/4-inch nominal maximum aggregate size.

2.13 FABRICATING REINFORCEMENT

- A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."
 - 1. Corner bars for providing for continuity of horizontal reinforcing around corners of footings, foundation walls, and other concrete items <u>are required</u>.
- 2.14 CONCRETE MIXING
 - A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch (6 mm) for rough-formed finished surfaces.

- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete only where indicated.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.
- 3.2 EMBEDDED ITEMS
 - A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

- 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."
- B. All sleeves, anchor bolts, dowels, and reinforcing items, together with anchors, weld plates, bearing plates, etc. to be set in concrete, shall be positioned and securely anchored in place prior to placement of concrete. Such items shall not be pushed into freshly placed concrete.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete, if concrete is hard enough to not be damaged by form-removal operations and curing and protection operations are maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved[at least 70 percent of] its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORES AND RESHORES

- A. Comply with ACI 318 (ACI 318M) and ACI 301 for design, installation, and removal of shoring and reshoring.
 - 1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.
- B. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.

C. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.6 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints where indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.
 - 3. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 - 4. Space vertical joints in walls as indicated.

- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.
 - 2. Terminate full-width joint-filler strips not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Division 07 Section "Joint Sealants," are indicated.
 - 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.7 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect in writing.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- C. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams

or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

- 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
- 1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- 2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- D. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and opentextured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.
- E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg F (4.4 deg C) for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- F. Hot-Weather Placement: Comply with ACI 301 and as follows:

- 1. Maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
- 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.8 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to view.
 - a. Vertical surfaces of exterior side of concrete foundation walls exposed to view shall be finished as smooth-formed finish.

b. DO NOT SACK FINISH EXPOSED SMOOTH-FORMED FINISH CONCRETE.

C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

3.9 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill

low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

- 1. Apply float finish to surfaces indicated or to receive trowel finish.
- C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.
 - 2. Finish surfaces to the following tolerances, according to ASTM E 1155 (ASTM E 1155M), for a randomly trafficked floor surface:
 - a. Specified overall values of flatness, F(F) 35; and of levelness, F(L) 30; with minimum local values of flatness, F(F) 25; and of levelness, F(L) 20 for slabs on grade.
- D. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces indicated. While concrete is still plastic, slightly scarify surface with a fine broom.
 - 1. Comply with flatness and levelness tolerances for trowel finished floor surfaces.
- E. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, and ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.10 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.

3.11 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete slabs according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.

- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moistureretaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - c. Cure concrete surfaces to receive floor coverings with either a moistureretaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
- 3. Curing Compound: Use only at slabs to be covered with carpet or resilient flooring. Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.

3.12 CONCRETE SLAB SEALING

- A. Concrete Slab Sealing: Prepare, apply, and finish concrete slab sealer according to manufacturer's written instructions.
 - 1. Remove all contaminants and complete surface repairs.
 - 2. Do not apply to concrete that is less than 28 days' old.
 - 3. Apply sealers using methods and coverage rates recommended by manufacturer.

3.13 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least one month. Do not fill joints until construction traffic has permanently ceased.

- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.14 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part Portland cement to two and one-half parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension in solid concrete, but not less than 1 inch (25 mm) in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill formtie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

- Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
- 2. After concrete has cured at least 14 days, correct high areas by grinding.
- 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
- 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
- 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
- 6. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 7. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.15 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections as required by applicable

codes, as required by agencies having jurisdiction, and as directed by the Architect and prepare test reports. Costs for such testing will be paid directly to the inspecting and testing agency by the Owner.

- B. Inspections may include the following.:
 - 1. Steel reinforcement placement.
 - 2. Verification of use of required design mixture.
 - 3. Concrete placement, including conveying and depositing.
 - 4. Curing procedures and maintenance of curing temperature.
 - 5. Verification of concrete strength before removal of shores and forms from beams and slabs.
- C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172.
 - 1. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 2. Air Content: ASTM C 231, pressure method, for normal-weight concrete. One test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 3. Concrete Temperature: ASTM C 1064/C 1064M.
 - 4. Compression Test Specimens: ASTM C 31/C 31M.
 - 5. Compressive-Strength Tests: ASTM C 39/C 39M; one set of specimens tested at 7 days and one set of specimens at 28 days.
 - 6. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
 - 7. Strength of each concrete mixture will be satisfactory only if no compressivestrength test value falls below specified compressive strength.
 - 8. Test results will be reported in writing to Architect, Owner, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
 - 9. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
 - 10. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.

- 11. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 12. Correct deficiencies in the Work that test reports and inspections indicate dos not comply with the Contract Documents.
- D. Measure floor and slab flatness and levelness according to ASTM E 1155 (ASTM E 1155M) within 48 hours of finishing.

END OF SECTION 033000

Alsea School District Electrical Service Entrance - Phase 1A Alsea, Oregon

DIVISION 260000 – ELECTRICAL SPECIFICATION

- 260100 ELECTRICAL GENERAL PROVISIONS
- 260500 COMMON WORK RESULTS FOR ELECTRICAL
- 260519 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 260526 GROUNDING AND BONDING
- 260529 HANGERS AND SUPPORTS
- 260533 RACEWAY AND BOXES
- 260548 VIBRATION AND SEISMIC CONTROLS
- 260553 ELECTRICAL IDENTIFICATION
- 262413 SWITCHBOARDS
- 262416 PANELBOARDS
- 262726 WIRING DEVICES
- 262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 263210 ENGINE GENERATOR
- 263600 TRANSFER SWITCHES

SECTION 260100 - ELECTRICAL GENERAL PROVISIONS

PART 1 - GENERAL

1.1 CONDITIONS AND REQUIREMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Provisions of this Section shall apply to all Sections of Division 26, 27, AND 28.

1.2 SCOPE OF WORK

- A. Furnish and install all materials and equipment and provide all labor required and necessary to complete the work shown on the drawings and/or specified in all Sections of Division 26, 27, AND 28 and all other work and miscellaneous items, not specifically mentioned, but reasonably inferred for a complete installation, including all accessories required for testing the system. It is the intent of the drawings and specifications that all systems be complete and ready for operation.
- B. All systems installed in the facility shall be functional and in good working order prior to owner training and use. Any system installed that is not in good working order shall be repaired or replaced to the complete satisfaction of the owner at no additional cost to the owner.

1.3 CODE COMPLIANCE

- A. All work and materials shall comply with the latest rules, codes and regulations, including, but not limited to, the following:
 - 1. Occupational Safety and Health Act Standards (OSHA)
 - 2. NFPA #70 National Electric Code (NEC)
 - 3. ADA Standards Americans with Disabilities Act
 - 4. ANSI/IEEE C-2 National Electrical Safety Code
 - 5. NECA Standard of Installation
 - 6. International Building Code
 - 7. International Fire Code
 - 8. International Energy Conservation Code
 - 9. NFPA #72 Fire Code
 - 10. NFPA #101 Life Safety Code
 - 11. All other applicable Federal, State and local laws and regulations.
- B. Work to be executed and inspected in accordance with local codes and ordinances. Permits, fees or charges for inspection or other services shall be paid for by the contractor. Local codes and ordinances are to be considered as minimum requirements and must be properly executed without expense to the owner; but do not relieve the contractor from work shown that exceeds minimum requirements.

1.4 CONDITIONS AT SITE

- A. Visit to site is required of all bidders prior to submission of bid. All will be held to have familiarized themselves with all discernible conditions and no extra payment will be allowed for work required because of these conditions, whether specifically mentioned or not.
- B. Lines of other service that are damaged as a result of this work shall be promptly repaired at no expense to the owner to the complete satisfaction of the owner.

1.5 DRAWINGS AND SPECIFICATIONS

- A. All drawings and all specifications shall be considered as a whole and work of this Division shown anywhere therein shall be furnished under this Division.
- B. Drawings are diagrammatic and indicate the general arrangement of equipment and wiring. Most direct routing of conduits and wiring is not assured. Exact requirements shall be governed by architectural, structural and mechanical conditions of the job. Consult all other drawings in preparation of the bid. Extra lengths of wiring or addition of pull or junction boxes, etc., necessitated by such conditions shall be included in the bid. Check all information and report any apparent discrepancies before submitting bid.
- C. Change to location, type, function, brand name, finish, etc., shall not be made without permission of owner.
- D. Some equipment is specifically designated on the drawings. It is not the intent to sole source any item unless explicitly stated. Items have been specified based upon design requirements. All bidders are encouraged to submit products for approval. Prior approval must be obtained as required by these contract documents. Bids submitted with non-approved items will be considered invalid and bid will be forfeit. Submittals received by the engineer after award of contract on non-approved equipment will not be reviewed nor will they be returned.

1.6 SAFETY AND INDEMNITY

- A. Safety: The contractor shall be solely and completely responsible for conditions of the job site, including safety of all persons and property during performance of the work. This requirement will apply continuously and not be limited to normal working hours.
- B. No act, service, drawing review or construction review by the owner or owner's representative is intended to include review of the adequacy of the contractor's safety measures in, on, or near the construction site.

1.7 CONSTRUCTION OBSERVATION BY THE OWNER

A. Prior to covering: any major portion of the materials installed under this section, notify the owner so that an observation can be made. Notification shall be made at least three (3) working days in advance of the date the items will be covered.

1.8 INSTRUCTION OF OWNER'S PERSONNEL

- A. The contractor shall conduct an on-site instructional tour of the entire project. The personnel designated by the owner shall be instructed in: operation of all electrical systems, trouble-shooting procedures, preventative maintenance procedures, uses of Operation and Maintenance manuals, and cleaning of lighting fixtures and operation of all special systems including data, cctv, access control, and fire alarm.
- B. Contractor will include in his bid 8 hours of instruction time to be held at the project location after substantial completion for instruction of owner's personnel. Coordinate time and number of owner personnel to be present and provide schedule to engineer.

1.9 PROJECT COMPLETION

- A. Upon completion of all work and operational checks on all systems, the contractor shall request that a final construction observation be performed.
- B. The owner or owner's representative shall compile a punch list of items to be completed or corrected. The contractor shall notify the owner upon completion of the items.

1.10 GUARANTEE

- A. All work under this section shall be guaranteed in writing to be free of defective work, materials, or parts for a period of one (1) year, except lamps, which shall be guaranteed for thirty (30) days after final acceptance of the work under the contract.
- B. Repair, revision or replacement of any and all defects, failure or inoperativeness shall be done by the contractor at no cost to the owner.

PART 2 - PRODUCTS

2.1 MATERIAL APPROVAL

- A. The design, manufacturer and testing of electrical equipment and materials shall conform to or exceed latest applicable NEMA, IEEE or ANSI standards.
- B. All materials must be new and UL listed. Materials that are not covered by UL testing standards shall be tested and approved by an independent testing laboratory or a governmental agency, which laboratory shall be acceptable to the owner and code enforcing agency.

2.2 SHOP DRAWINGS AND MATERIALS LIST

A. Submit shop drawings and materials lists as specified for review. Four (4) copies of submittals shall be presented to the owner.

ELECTRICAL GENERAL PROVISIONS

2.3 OPERATION AND MAINTENANCE MANUALS

A. Submit four (4) sets of Operation and Maintenance Manuals of equipment to owner.

2.4 RECORD DRAWINGS

A. Submit record drawings to owner.

2.5 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver, store, and handle materials in a manner to prevent damage.
- B. Protect equipment from weather and dampness.

PART 3 - EXECUTION

3.1 WORKMANSHIP AND CONTRACTOR'S QUALIFICATIONS

- A. Only quality workmanship will be accepted. Haphazard or poor installation practice will be cause for rejection of work.
- B. Provide experienced foreman with a minimum of three years experience working on this type of building placed in charge of this work at all times.

3.2 COORDINATION

- A. Coordinate work with other trades to avoid conflict and to provide correct rough-in and connection for equipment furnished under trades that require electrical connections. Inform contractors of other trades of the required access to and clearances around electrical equipment to maintain serviceability and code compliance.
- B. Verify equipment dimensions and requirements with provisions specified under this Section. Check actual job conditions before fabricating work. Report necessary changes in time to prevent needless work. Changes or additions subject to additional compensation, which are made without the authorization of the owner, shall be at contractor's risk and expense.

3.3 MANUFACTURER'S INSTRUCTIONS

A. Where the specifications call for an installation to be made in accordance with manufacturer's recommendations, a copy of such recommendations shall be included with the equipment submittal at all times be kept in the job superintendent's office and shall be available to the owner.

B. Follow manufacturer's instructions where they cover points not specifically indicated on drawings and specifications. If they are in conflict with the drawings and specifications obtain clarification from the owner before starting work.

3.4 QUALITY ASSURANCE

- A. The contractor shall insure that all workmanship, all materials employed, all required equipment and the manner and method of installation conforms to accepted construction and engineering practices, and that each piece of equipment is in satisfactory working condition to satisfactorily perform its functional operation.
- B. Provide quality assurance tests and operational check on all components of the electrical distribution system, all lighting fixtures, and special systems.

3.5 CUTTING AND PATCHING

- A. Perform all cutting and fittings required for work of this section in rough construction of the building.
- B. All patching of finished construction of building shall be performed under the sections of specifications covering these materials.
- C. No joists, beams, girders or columns shall be cut by any contractor without obtaining written permission from the owner.

3.6 EXCAVATION AND BACKFILL

- A. Excavation: the contractor shall do all necessary excavation of whatever substances encountered for proper laying of all raceways or cables except as noted on the drawings. Excavated materials not required for fill shall be removed from the site as directed by the owner.
- B. Excavation shall be carried low enough to allow minimum coverage over raceways. Excess excavation below required level shall be backfilled at the contractor's expense with earth, sand or gravel as directed by the owner. Ground adjacent to all excavations shall be graded to prevent water running in.
- C. The contractor shall remove, by pumping or other means approved by the owner, any water accumulated in excavation.
- D. Backfilling: perform all backfilling in accordance with Division 31 Earthwork.
- E. No backfilling shall be done until installation has been approved by the owner.

END OF SECTION 260100

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Common electrical installation requirements.

1.3 DEFINITIONS

- A. ATS: Acceptance Testing Specifications.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. NBR: Acrylonitrile-butadiene rubber.

1.4 QUALITY ASSURANCE

A. Test Equipment Suitability and Calibration: Comply with NETA ATS, "Suitability of Test Equipment" and "Test Instrument Calibration."

1.5 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed.
- D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.138-inch thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping.

2.3 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Available Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.

- 2. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
- 3. Pressure Plates: Stainless steel. Include two for each sealing element.
- 4. Connecting Bolts and Nuts Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Coordinate sleeve selection and application with selection and application of firestopping.
- C. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- D. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- E. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
- F. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- G. Cut sleeves to length for mounting flush with both surfaces of walls.

- H. Extend sleeves installed in floors 2 inches above finished floor level unless specified on plans.
- I. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require a different clearance.
- J. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- K. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials.
- L. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground, exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.5 FIELD QUALITY CONTROL

A. Inspect installed sleeve and sleeve-seal installations and associated firestopping for damage and faulty work.

END OF SECTION 260500

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
 - 3. Sleeves and sleeve seals for cables.
- B. Related Sections include the following:
 - 1. Division 27 Section "Communications Cabling" for cabling used for voice and data circuits.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Insulated Wire Corp.; a Leviton Company.
 - 2. General Cable Corporation.
 - 3. Senator Wire & Cable Company.
 - 4. Southwire Company.
- B. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

2.2 CONNECTORS AND SPLICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. 3M; Electrical Products Division.
 - 5. Tyco Electronics Corp.
- C. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.

C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide a comparable product by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Calpico, Inc.
 - 3. Metraflex Co.
 - 4. Pipeline Seal and Insulator, Inc.
- C. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders:

Aluminum or Copper. stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type THHN-THWN, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway.

- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway or MC type cable assembly.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- H. Branch Circuits in Cable Tray: Type THHN-THWN, single conductors in raceway.
- I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainlesssteel, wire-mesh, strain relief device at terminations to suit application.
- J. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- K. Class 2 Control Circuits: Type THHN-THWN, in raceway, or Power-limited tray cable, in cable tray.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in conduit within finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed conduits parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
- F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- F. Cut sleeves to length for mounting flush with both wall surfaces.
- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."
- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

- M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground exterior-wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches (6 by 50 mm) in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad 5/8 by 96 inches (16 by 2400 mm) in diameter or as noted on drawings.
- B. Ufer ground: bare copper as noted on drawings.
- C. All underground connections to the grounding electrode system shall be cad welded connections.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install stranded conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare copper conductor, No. 3/0 AWG minimum.
 - 1. Bury at least 24 inches (600 mm) below grade.
- C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors are required, except at test wells and as otherwise indicated.
 - 3. Connections to Structural Steel (red iron): Welded connectors.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch (6-by-50-by-300-mm) grounding bus.
 - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.

- 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- C. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
- E. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.
- F. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG or as noted on drawings.
 - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.
- B. Related Sections include the following:
 - 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
 - 2. Nonmetallic slotted support systems.
- B. Shop Drawings: Show fabrication and installation details for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Nonmetallic slotted channel systems. Include Product Data for components.
 - 4. Equipment supports.

1.5 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
 - 2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 5. Toggle Bolts: All-steel springhead type.
 - 6. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps Retain paragraph below for projects where seismic design requirements do not apply. Consider retaining for light-commercial projects only.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

RACEWAY AND BOXES

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 5. Electri-Flex Co.
 - 6. Manhattan/CDT/Cole-Flex.
 - 7. Maverick Tube Corporation.
 - 8. O-Z Gedney; a unit of General Signal.
 - 9. Wheatland Tube Company.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. Aluminum Rigid Conduit: ANSI C80.5.
- D. IMC: ANSI C80.6.
- E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMA RN 1.
 - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- F. EMT: ANSI C80.3.
- G. FMC: Zinc-coated steel or aluminum.
- H. LFMC: Flexible steel conduit with PVC jacket.
- I. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886.
 - 2. Fittings for EMT: Steel type.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- J. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 3. Arnco Corporation.
 - 4. CANTEX Inc.
 - 5. CertainTeed Corp.; Pipe & Plastics Group.
 - 6. Condux International, Inc.
 - 7. ElecSYS, Inc.
 - 8. Electri-Flex Co.
 - 9. Lamson & Sessions; Carlon Electrical Products.
 - 10. Manhattan/CDT/Cole-Flex.
 - 11. RACO; a Hubbell Company.
 - 12. Thomas & Betts Corporation.
- B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.

2.3 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Arnco Corporation.
 - 2. Endot Industries Inc.
 - 3. IPEX Inc.
 - 4. Lamson & Sessions; Carlon Electrical Products.
- B. Description: Comply with UL 2024; flexible type, approved for plenum, riser installation.

2.4 METAL WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- C. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

- D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- E. Wireway Covers: Hinged type.
- F. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Prime coating, ready for field painting, painted to match conditions.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hubbell
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.
- B. Surface Nonmetallic Raceways: Two-piece construction, manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standardcolors.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hubbell Incorporated; Wiring Device-Kellems Division.
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman.
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. RACO; a Hubbell Company.
 - 7. Thomas & Betts Corporation.
 - 8. Walker Systems, Inc.; Wiremold Company (The).

- 9. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- C. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- D. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- F. Metal Floor Boxes: Cast metal, rectangular.
- G. Nonmetallic Floor Boxes: Nonadjustable, round.
- H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- I. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, galvanized, cast iron with gasketed cover.
- J. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
- K. Cabinets:
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Comply with SCTE 77.
 - 1. Color of Frame and Cover: Green.
 - 2. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC." or "TELEPHONE." as indicated for each service.
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 7. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armorcast Products Company.
 - b. Carson Industries LLC.
 - c. CDR Systems Corporation.
 - d. NewBasis.
- C. Fiberglass Handholes and Boxes with Polymer-Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester-resin enclosure joined to polymer-concrete top ring or frame.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armorcast Products Company.
 - b. Carson Industries LLC.
 - c. Christy Concrete Products.
 - d. Synertech Moulded Products, Inc.; a division of Oldcastle Precast.
- D. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers of fiberglass.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carson Industries LLC.
 - b. Christy Concrete Products.
 - c. Nordic Fiberglass, Inc.

2.8 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.9 SLEEVE SEALS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Calpico, Inc.
 - 3. Metraflex Co.
 - 4. Pipeline Seal and Insulator, Inc.
- B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 PRODUCTION INSPECTIONS

- A. Installation approval by owner is required at each phase of construction as noted below. Proceeding without owner approval may result in rejection of work and/or installation and result in the contractor removing newly installed raceway, boxes, cables, racks, and etc (all system components).
 - 1. Submittal documents (shop drawings).
 - 2. Substitution requests.
 - 3. Raceway Rough-in.
 - 4. Equipment location and installation.

3.2 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 - 1. Exposed Conduit: Rigid steel conduit.
 - 2. Concealed Conduit, Aboveground: Rigid steel conduit.
 - 3. Underground Conduit: RNC, Type EPC-40 -PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
 - 6. Application of Handholes and Boxes for Underground Wiring:
 - a. Handholes and Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 structural load rating.

- b. Handholes and Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer-concrete units, SCTE 77, Tier 8 structural load rating.
- c. Handholes and Pull Boxes Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT
 - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: Rigid steel conduit.
 - 7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway
 - 8. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits in contact with concrete.

3.3 INSTALLATION

- A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.

- C. Complete raceway installation before starting conductor installation.
- D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- H. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.
- I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 - 1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m).
 - 2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m).
 - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

- 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
- 2. Where otherwise required by NFPA 70.
- N. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- O. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- P. Set metal floor boxes level and flush with finished floor surface.
- Q. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.4 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
 - 2. Install backfill as specified in Division 31 Section "Earth Moving."
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 - b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
 - 6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above directburied conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit.

3.5 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
- D. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.6 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).
- E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- F. Cut sleeves to length for mounting flush with both surfaces of walls.
- G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed.
- I. Seal space outside of sleeves with grout for penetrations of concrete and masonry.
- J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

- K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."
- L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.
- M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.7 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground, exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

3.9 **PROTECTION**

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Spring isolators.
 - 3. Restrained spring isolators.
 - 4. Channel support systems.
 - 5. Restraint cables.
 - 6. Hanger rod stiffeners.
 - 7. Anchorage bushings and washers.
- B. Related Sections include the following:
 - 1. Division 26 Section "Hangers And Supports For Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 DEFINITIONS

- A. The IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC:
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC:

1.5 QUALITY ASSURANCE

A. Comply with NFPA 70.

VIBRATION AND SEISMIC CONTROLS

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 4. Hilti Inc.
 - 5. Loos & Co.; Seismic Earthquake Division.
 - 6. Mason Industries.
 - 7. TOLCO Incorporated; a brand of NIBCO INC.
 - 8. Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods.
- F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.
- G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.
- H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment and Hanger Restraints:
 - 1. Install restrained isolators on electrical equipment.
 - 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 - 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- D. Drilled-in Anchors:

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 ADJUSTING

- A. Adjust isolators after isolated equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 260548

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Identification for raceway and metal-clad cable.
 - 2. Identification for conductors and communication and control cable.
 - 3. Underground-line warning tape.
 - 4. Warning labels and signs.
 - 5. Instruction signs.
 - 6. Equipment identification labels.
 - 7. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.145.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

IDENTIFICATION FOR ELECTRICAL SYSTEMS

- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Color for Printed Legend:
 - 1. Power Circuits: Black letters on an orange field.
 - 2. Legend: Indicate system or service and voltage, if applicable.
- C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use.

2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

- A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- (0.35-mm-) thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors.
- D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking nylon tie fastener.

- E. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable.
 - 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.3 UNDERGROUND-LINE WARNING TAPE

- A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
- C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm).
- D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, celluloseacetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm).
- E. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.5 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 EQUIPMENT IDENTIFICATION LABELS

- A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).
- B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and ultraviolet-resistant seal for label.
- C. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).
- D. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).
- E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.6 kg), minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
 - 1. Exterior Concrete, Stucco, and Masonry (Other Than Concrete Unit Masonry):
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Exterior concrete and masonry primer.
 - 2) Finish Coats: Exterior semigloss acrylic enamel.
 - 2. Exterior Concrete Unit Masonry:
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a block filler.
 - 1) Block Filler: Concrete unit masonry block filler.
 - 2) Finish Coats: Exterior semigloss acrylic enamel.
 - 3. Exterior Ferrous Metal:
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Exterior ferrous-metal primer.
 - 2) Finish Coats: Exterior semigloss alkyd enamel.

- 4. Exterior Zinc-Coated Metal (except Raceways):
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Exterior zinc-coated metal primer.
 - 2) Finish Coats: Exterior semigloss alkyd enamel.
- 5. Interior Concrete and Masonry (Other Than Concrete Unit Masonry):
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior concrete and masonry primer.
 - 2) Finish Coats: Interior semigloss alkyd enamel.
- 6. Interior Concrete Unit Masonry:
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a block filler.
 - 1) Block Filler: Concrete unit masonry block filler.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- 7. Interior Gypsum Board:
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior gypsum board primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- 8. Interior Ferrous Metal:
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior ferrous-metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- 9. Interior Zinc-Coated Metal (except Raceways):
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior zinc-coated metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, snap-around, color-coding bands:
 - 1. Fire Alarm System: Red.
 - 2. Fire-Suppression Supervisory and Control System: Red and yellow.
 - 3. Combined Fire Alarm and Security System: Red and blue.
 - 4. Security System: Blue and yellow.
 - 5. Mechanical and Electrical Supervisory System: Green and blue.
 - 6. Telecommunication System: Green and yellow.
 - 7. Control Wiring: Green and red.
- B. Power-Circuit Conductor Identification: For secondary conductors No. 1/0AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
- C. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number.
- D. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source and circuit number.
- E. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual.
- F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.

- 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- H. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label]. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label Stenciled legend 4 inches (100 mm) high.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled:
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - d. Transformers.
 - e. Electrical substations.
 - f. Emergency system boxes and enclosures.
 - g. Motor-control centers.
 - h. Disconnect switches.
 - i. Enclosed circuit breakers.
 - j. Motor starters.
 - k. Push-button stations.
 - 1. Power transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery inverter units.
 - p. Battery racks.
 - q. Power-generating units.
 - r. Voice and data cable terminal equipment.
 - s. Master clock and program equipment.
 - t. Intercommunication and call system master and staff stations.
 - u. Television/audio components, racks, and controls.
 - v. Fire-alarm control panel and annunciators.
 - w. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks.
 - x. Monitoring and control equipment.
 - y. Uninterruptible power supply equipment.

z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
- G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches (400 mm) overall.

END OF SECTION 260553

SECTION 262413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service and distribution switchboards rated 600 V and less.
 - 2. Transient voltage suppression devices.
 - 3. Disconnecting and overcurrent protective devices.
 - 4. Instrumentation.
 - 5. Control power.
 - 6. Accessory components and features.
 - 7. Identification.

1.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 SUBMITTALS

- A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.

SWITCHBOARDS

- 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
- 6. Detail utility company's metering provisions with indication of approval by utility company.
- 7. Include evidence of NRTL listing for series rating of installed devices.
- 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
- 10. Include schematic and wiring diagrams for power, signal, and control wiring.
- C. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for switchboards and all installed components.
 - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
- B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 2.
- F. Comply with NFPA 70.
- G. Comply with UL 891.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

1.7 PROJECT CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
 - 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F (40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.8 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

SWITCHBOARDS

- 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
- 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
- 3. Siemens Energy & Automation, Inc.
- 4. Square D; a brand of Schneider Electric.
- B. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Panel or Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- C. Nominal System Voltage: 208Y/120 V.
- D. Main-Bus Continuous: as noted on drawings.
- E. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- F. Indoor Enclosures: Steel, NEMA 250, Type 1.
- G. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- H. Outdoor Enclosures: Type 3R.
 - 1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
 - 2. Enclosure: Flat roof; for each section, with provisions for padlocking.
- I. Barriers: Between adjacent switchboard sections.
- J. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
- K. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- L. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- M. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silverplated, with tin-plated aluminum or copper feeder circuit-breaker line connections.
 - 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections.
 - 3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silverplated, or tin-plated, high-strength, electrical-grade aluminum alloy.
 - 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors.

Provide load terminals for future circuit-breaker positions at full-ampere rating of circuitbreaker position.

- 5. Ground Bus: 1/4-by-2-inch- (6-by-50-mm-) hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
- 6. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
- 7. Neutral Buses: 50 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- 9. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
- N. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment as noted on drawings.
- O. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.
- P. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.

2.2 TRANSIENT VOLTAGE SUPPRESSION DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Surge Protection Device Description: IEEE C62.41-compliant, integrally mounted, wired-in, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the switchboard short-circuit rating, and with the following features and accessories:
 - 1. Fuses, rated at 200-kA interrupting capacity.
 - 2. Fabrication using bolted compression lugs for internal wiring.
 - 3. Integral disconnect switch.
 - 4. Redundant suppression circuits.
 - 5. Redundant replaceable modules.
 - 6. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.

- 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
- 10. [Four] [Six]-digit, transient-event counter set to totalize transient surges.
- C. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase
- D. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.
- E. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120-V, three-phase, four-wire circuits shall be as follows:
 - 1. Line to Neutral: 400 V for 208Y/120.
 - 2. Line to Ground: 400 V for 208Y/120.
 - 3. Neutral to Ground: 400 V for 208Y/120.
- F. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with high leg shall be as follows:
 - 1. Line to Neutral: 400 V, 800 V from high leg.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.
- G. Protection modes and UL 1449 SVR for 240-, 480-, or 600-V, three-phase, three-wire, delta circuits shall be as follows:
 - 1. Line to Line: 1000 V for 240 V.
 - 2. Line to Ground: 800 V for 240 V.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.

- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiterstyle fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
- 6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- 7. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - d. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

2.4 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- B. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

SWITCHBOARDS

- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to switchboards.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- E. Install filler plates in unused spaces of panel-mounted sections.
- F. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
- G. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 262413

SWITCHBOARDS

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. SVR: Suppressed voltage rating.
- B. TVSS: Transient voltage surge suppressor.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of panelboards and overcurrent protective devices.

- 5. Include evidence of NRTL listing for series rating of installed devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.
- 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 QUALITY ASSURANCE

- A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.9 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- B. Enclosures: Flush- and surface-mounted cabinets as noted in panel schedule.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 - 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 6. Finishes:

- a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
- b. Back Boxes: Same finish as panels and trim.
- c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- 7. Directory Card: Inside panelboard door, mounted in transparent card holder
- C. Incoming Mains Location: Top and bottom.
- D. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 - 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
- E. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: [Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 6. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extracapacity neutral bus.
- F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.
- G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- H. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 DISTRIBUTION PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.

- 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
- 3. Siemens Energy & Automation, Inc.
- 4. Square D; a brand of Schneider Electric.
- B. Panelboards: NEMA PB 1, power and feeder distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- D. Mains: Circuit breaker or Lugs only as indicated on drawings.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only, as indicated on drawings.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.

- B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 - 6. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
 - 7. Arc-Fault Circuit Interrupter (AFCI) Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
 - 8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.

2.5 PANELBOARD SUPPRESSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Current Technology; a subsidiary of Danahar Corporation.
 - 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 3. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 4. Liebert Corporation.
 - 5. Siemens Energy & Automation, Inc.
 - 6. Square D; a brand of Schneider Electric.
- B. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallelconnected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:

- 1. Accessories:
 - a. LED indicator lights for power and protection status.
 - b. Audible alarm, with silencing switch, to indicate when protection has failed.
 - c. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status.
- C. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, wired-in or bolt-on, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories:
 - 1. Accessories:
 - a. Fuses rated at 200-kA interrupting capacity.
 - b. Fabrication using bolted compression lugs for internal wiring.
 - c. Integral disconnect switch.
 - d. Redundant suppression circuits.
 - e. Redundant replaceable modules.
 - f. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 - g. LED indicator lights for power and protection status.
 - h. Audible alarm, with silencing switch, to indicate when protection has failed.
 - i. Form-C contacts rated at 5 Å and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 - j. Six-digit, transient-event counter set to totalize transient surges.
 - 2. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase.
 - 3. Minimum single-impulse current ratings, using 8-by-20-mic.sec. waveform described in IEEE C62.41.2.
 - a. Line to Neutral: 70,000 A.
 - b. Line to Ground: 70,000 A.
 - c. Neutral to Ground: 50,000 A.
 - 4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.
 - 5. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120-V, three-phase, four-wire circuits shall be as follows:
 - a. Line to Neutral: 400 V for 208Y/120.
 - b. Line to Ground: 400 V for 208Y/120.
 - c. Neutral to Ground: 400 V for 208Y/120.
 - 6. Protection modes and UL 1449 SVR for 240/120-V, single-phase, three-wire circuits shall be as follows:

- a. Line to Neutral: 400 V.
- b. Line to Ground: 400 V.
- c. Neutral to Ground: 400 V.
- 7. Protection modes and UL 1449 SVR for 240/120-V, three-phase, four-wire circuits with high leg shall be as follows:
 - a. Line to Neutral: 400 V, 800 V from high leg.
 - b. Line to Ground: 400 V.
 - c. Neutral to Ground: 400 V.
- 8. Protection modes and UL 1449 SVR for 240-, 480-, or 600-V, three-phase, three-wire, delta circuits shall be as follows:
 - a. Line to Line: 1000 V for 240 V.
 - b. Line to Ground: 800 V for 240 V.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
- B. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting: Install panelboards on concrete bases, 4-inch (100-mm) nominal thickness.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of base.
 - 2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to panelboards.
 - 5. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

- D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- F. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- G. Install filler plates in unused spaces.
- H. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.
- I. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- J. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 ADJUSTING

- A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.
- B. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.

4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

END OF SECTION 262416

SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes packaged engine-generator sets for standby power supply with the following features:
 - 1. Diesel engine.
 - 2. Unit-mounted cooling system.
 - 3. Remote-mounted control and monitoring.
 - 4. Performance requirements for sensitive loads.
 - 5. Outdoor enclosure critically silenced to 70 db.
- B. Related Sections include the following:
 - 1. Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 - 1. Thermal damage curve for generator.
 - 2. Time-current characteristic curves for generator protective device.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

- 1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
- 2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
- 3. Vibration Isolation Base Details: Signed and sealed by a qualified professional engineer. Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include base weights.
- 4. Wiring Diagrams: Power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Manufacturer Seismic Qualification Certification: Submit certification that diesel tank, enginegenerator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Qualification Data: For installer and manufacturer
- C. Source quality-control test reports.
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
 - 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 5. Report of sound generation.
 - 6. Report of exhaust emissions showing compliance with applicable regulations.
 - 7. Certified Torsional Vibration Compatibility: Comply with NFPA 110.
- D. Warranty: Special warranty specified in this Section.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.

ENGINE GENERATORS

1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 - 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 - 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
 - 1. Maintenance Proximity: Not more than two hours' normal travel time from Installer's place of business to Project site.
 - 2. Engineering Responsibility: Preparation of data for vibration isolators and seismic restraints of engine skid mounts, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles (321 km) of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.
- C. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with ASME B15.1.
- F. Comply with NFPA 70.
- G. Comply with UL 2200.
- H. Engine Exhaust Emissions: Comply with applicable state and local government requirements.
- I. Noise Emission: 72db for maximum noise level at 23 feet due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than 28 days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.
- B. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: Minus 15 to plus 40 deg C.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: Sea level to 3500 feet.

1.10 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.11 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 2 years from date of Substantial Completion.

1.12 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

Basis of Design: Kohler Co: 750REOZMD – Deisel (700 KW / 875 KVA)

Approved equal manfacturers:

- 1. Caterpillar; Engine Div.
- 2. Onan Cummings

2.2 ENGINE-GENERATOR SET

- A. Factory-assembled and -tested, engine-generator set.
- B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.
- C. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated on drawings including one line diagram and load summary.
 - 2. Output Connections: Three-phase, four wire.
 - 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- D. Generator-Set Performance:
 - 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 - 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent stepload increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 - 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 - 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.

- 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
- 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
- 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

- A. Fuel: Fuel oil, Grade DF-2.
- B. Rated Engine Speed: 1800 rpm.
- C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm (11.4 m/s).
- D. Lubrication System: The following items are mounted on engine or skid:
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 - 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- E. Engine Fuel System:
 - 1. Main Fuel Pump: Mounted on engine. Pump ensures adequate primary fuel flow under starting and load conditions.
 - 2. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
- F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.
- G. Governor: Adjustable isochronous, with speed sensing.
- H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on enginegenerator-set mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.

- 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
- 5. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, ultraviolet-, and abrasion-resistant fabric.
 - a. Rating: 50-psig (345-kPa) maximum working pressure with coolant at 180 deg F (82 deg C), and noncollapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 - 1. Minimum sound attenuation of 25 dB at 500 Hz.
 - 2. Sound level measured at a distance of 20 feet (3 m) from exhaust discharge after installation is complete shall be 70 dBA or less.
- J. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- K. Starting System: 12V electric, with negative ground.
 - 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 - 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice without recharging.
 - 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 - 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
 - 7. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
 - 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.

- c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
- d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.
- e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
- f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 FUEL OIL STORAGE

- A. Comply with NFPA 30.
- B. Base-Mounted Fuel Oil Tank: Factory installed and piped, complying with UL 142 fuel oil tank. Features include the following:
 - 1. Tank level indicator.
 - 2. Capacity: Fuel for 36 hours' continuous operation at 100 percent rated power output.
 - 3. Vandal-resistant fill cap.
 - 4. Containment Provisions: Comply with requirements of authorities having jurisdiction.

2.5 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When modeselector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.
- B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.
- C. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.
- D. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1system, and the following:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.

- 4. DC voltmeter (alternator battery charging).
- 5. Engine-coolant temperature gage.
- 6. Engine lubricating-oil pressure gage.
- 7. Running-time meter.
- 8. Ammeter-voltmeter, phase-selector switch(es).
- 9. Generator-voltage adjusting rheostat.
- 10. Fuel tank derangement alarm.
- 11. Fuel tank high-level shutdown of fuel supply alarm.
- 12. Generator overload.
- E. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- F. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.
 - 1. Engine high-temperature shutdown.
 - 2. Lube-oil, low-pressure shutdown.
 - 3. Overspeed shutdown.
 - 4. Remote emergency-stop shutdown.
 - 5. Engine high-temperature prealarm.
 - 6. Lube-oil, low-pressure prealarm.
 - 7. Fuel tank, low-fuel level.
 - 8. Low coolant level.
- G. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.6 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator Circuit Breaker: Insulated-case, electronic-trip type; 100 percent rated; complying with UL 489.
 - 1. Tripping Characteristics: Adjustable long-time and short-time delay and instantaneous.
 - 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 - 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 - 4. Mounting: Adjacent to or integrated with control and monitoring panel.

2.7 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H or Class F.

ENGINE GENERATORS

- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.
- E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- F. Enclosure: Outdoor enclosure.
- G. Instrument Transformers: Mounted within generator enclosure.
- H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 - 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.
- I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- K. Subtransient Reactance: 12 percent, maximum.

2.8 OUTDOOR GENERATOR-SET ENCLOSURE

- A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph (160 km/h). Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.
- B. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 - 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
- C. Convenience Outlets: Factory wired, GFCI. Arrange for external electrical connection. Circuit as indicated on drawings.

2.9 MOTORS

- A. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 - 2. Full load run.
 - 3. Maximum power.
 - 4. Voltage regulation.
 - 5. Transient and steady-state governing.
 - 6. Single-step load pickup.
 - 7. Safety shutdown.
 - 8. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
 - 9. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.
- B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
- B. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
 - 3. Battery-Charger Tests: Verify specified rates of charge for both equalizing and floatcharging conditions.
 - 4. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
 - 5. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg (120 kPa). Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
 - 6. Exhaust Emissions Test: Comply with applicable government test criteria.
 - 7. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
 - 8. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.
 - 9. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.

- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- H. Remove and replace malfunctioning units and retest as specified above.
- I. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213

SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes transfer switches rated 600 V and less, including the following:
 - 1. Automatic transfer switches.
 - 2. Remote annunciation systems.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.
 - 1. Single-Line Diagram: Show connections between transfer switch, power sources, and load;

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Features and operating sequences, both automatic and manual.
 - 2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.
- B. Source Limitations: Obtain automatic transfer switches and remote annunciators through one source which is the same as the generator manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with NEMA ICS 1.
- E. Comply with NFPA 70.
- F. Comply with NFPA 110.
- G. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.7 **PROJECT CONDITIONS**

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:
 - 1. Notify Construction Manager no fewer than 28 days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Owner's written permission.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

TRANSFER SWITCHES

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Transfer Switches Using Molded-Case Switches or Circuit Breakers:

Basis of design – Kohler Co: KEP, Service Entrance Rated, with input breakers

Open transition, 4 pole ATS, 2000A rated

Approved equal manufacturer:

- a. Caterpillar.
- b. Onan Cummings

2.2 AUTOMATIC TRANSFER SWITCHES

- A. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.
- B. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation.
- C. Manual Switch Operation: Unloaded. Control circuit automatically disconnects from electrical operator during manual operation.
- D. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.
- E. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- F. Automatic Transfer-Switch Features:
 - 1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.

- 4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
- 5. Test Switch: Simulate normal-source failure.
- 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
- 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normal- and emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
- 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
- 9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
- 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
- 11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.
- 12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- 13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 - a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 - b. Push-button programming control with digital display of settings.
 - c. Integral battery operation of time switch when normal control power is not available.

2.3 REMOTE ANNUNCIATOR SYSTEM

- A. Functional Description: Remote annunciator panel shall annunciate conditions for indicated transfer switches. Annunciation shall include the following:
 - 1. Sources available, as defined by actual pickup and dropout settings of transfer-switch controls.
 - 2. Switch position.
 - 3. Switch in test mode.
 - 4. Failure of communication link.
- B. Annunciator Panel: LED-lamp type with audible signal and silencing switch.

TRANSFER SWITCHES

- 1. Indicating Lights: Grouped for each transfer switch monitored.
- 2. Label each group, indicating transfer switch it monitors, location of switch, and identity of load it serves.
- 3. Mounting: Surface, modular, steel cabinet, unless otherwise indicated.
- 4. Lamp Test: Push-to-test or lamp-test switch on front panel.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- B. Floor-Mounting Switch: Anchor to floor by bolting.
 - 1. Concrete Bases: 4 inches (100 mm) high, reinforced, with chamfered edges. Extend base no more than 4 inches (100 mm) in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Division 26 Section "Hangers and Supports for Electrical Systems."
- C. Annunciator and Control Panel Mounting: Surface on wall, unless otherwise indicated.
- D. Identify components according to Division 26 Section "Identification for Electrical Systems."
- E. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

3.2 CONNECTIONS

- A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.
 - 2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulationresistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.
 - b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 - c. Verify that manual transfer warnings are properly placed.
 - d. Perform manual transfer operation.
 - 5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 - f. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.
 - 6. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
 - a. Verify grounding connections and locations and ratings of sensors.
- C. Coordinate tests with tests of generator and run them concurrently.

- D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- E. Remove and replace malfunctioning units and retest as specified above.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Division 01 Section "Demonstration and Training."
- B. Coordinate this training with that for generator equipment.

END OF SECTION 263600